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The previously proposed “Complexity=Volume” or CV-duality is probed and developed in several

directions. We show that the apparent lack of universality for large and small black holes is removed

if the volume is measured in units of the maximal time from the horizon to the “final slice” (times

Planck area). This also works for spinning black holes. We make use of the conserved “volume

current,” associated with a foliation of spacetime by maximal volume slices, whose flux measures

their volume. This flux picture suggests that there is a transfer of the complexity from the UV to the

IR in holographic CFTs, which is reminiscent of thermalization behavior deduced using holography.

It also naturally gives a second law for the complexity when applied at a black hole horizon. We

further establish a result supporting the conjecture that a boundary foliation determines a bulk

maximal foliation without gaps, establish a global inequality on maximal volumes that can be used

to deduce the monotonicity of the complexification rate on a boost-invariant background, and probe

CV duality in the settings of multiple quenches, spinning black holes, and Rindler-AdS.
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I. INTRODUCTION

The AdS/CFT correspondence [1–3] provides a satisfying duality between a black hole in asymptotically

anti de-Sitter spacetime and a thermal state of a CFT, in which the entropy of the black hole is dual to

ordinary thermal entropy. What remains obscure, however, is the relation between the black hole interior

and the physics of the CFT. Aside from its (semiclassical) causal isolation, the interior has two qualitative

features that one would like to understand from the viewpoint of the CFT: the curvature singularity, and the

growth of space. The latter follows from the well known peculiar fact that the symmetry of time flow outside

the horizon becomes a space translation symmetry inside. Under this symmetry flow, exterior time elapses,

and the length of a spacelike curve at a fixed interior radius grows, with a rate that increases without bound

as the fixed radius approaches the singularity. Susskind observed [4–8] that this growth should be reflected

somehow in the CFT, because it can be captured by a gauge invariant observable of the bulk gravity theory.

He proposed that it corresponds to the computational complexity of the state of the CFT, which continues

to grow, after statistical equilibrium is reached, for a time that is exponential in the entropy.
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This proposal was quickly refined to “CV-duality”, according to which the complexity at a given bound-

ary/CFT time is proportional to the volume of the maximal slice enclosed within the corresponding “Wheeler-

DeWitt patch,” i.e., within the domain of dependence of a spacelike bulk hypersurface that asymptotes to

the given boundary time slice1. Shortly thereafter, the alternative postulate of “CA-duality” was introduced,

according to which complexity is equal to the action of the Wheeler-DeWitt patch (see [9–13] for a selection

of recent work on these two proposals 2). Both of these proposals predict a rate of growth of the complexity

at late time that roughly agrees with general expectations.

There is reason to expect that the rate of complexification for a CFT in equilibrium scales as TS/h̄, the

product of the temperature T and the entropy S [4]. The entropy counts the number of ‘active’ degrees of

freedom, and h̄/T is the timescale for thermal fluctuations. If each such fluctuation counts as the execution

of a quantum gate on active degrees of freedom, then the number of gates executed per unit time is ∼ TS/h̄,

which is thus the rate at which the complexity of the state increases. In order to match this rate, the

complexity for black holes that are large compared to the AdS radius ` should be given in terms of the

volume of the maximal slice by [5]

C ∼ V

h̄G`
. (1)

In equilibrium, the maximal slice approaches a final maximal cylinder inside the horizon, with fixed cross-

sectional area and a proper length that grows in proportion to Killing time. The above formula equates the

complexity to this area, measured in Planck units, times the proper length of the cylinder, measured in AdS

length units. For black holes small compared `, the complexity should instead be given by

C ∼ V

h̄Gr+
, (2)

so that the proper length of the cylinder is measured in horizon radius units r+ [5]. Unlike the case for large

black holes, this depends upon the black hole size. This discrepancy is a principal reason for preferring CA

over CV. The fact that the volume divisor in CV is ` for large black holes, but r+ for small black holes,

indicates an apparent lack of universality.

However, in both cases this divisor actually corresponds to an intrinsic property of the black hole: the

maximum time τf to fall from the horizon to the final maximal cylinder is ∼ r+/c for spherical black holes

with r+ ≤ ` in D ≥ 4 dimensions, and ∼ `/c for black holes with r+ ≥ `.3 Hence the complexity formuale

(1) and (2) actually coincide, up to an order unity numerical factor, if the length in the denominator is

understood as df := cτf . That is, in computing the complexity, the length of a section of the final cylinder

∆Lf should be measured in units of the maximal time to fall from the horizon to the cylinder. The universal

1 In this paper, we systematically use the term “slice” to refer to spacelike codimension-1 submanifolds.
2 See also [14] for the consideration of complexity in a related but somewhat different context involving black holes.
3 An alternative but related divisor would be the proper time from horizon to final slice along along the volume flow. This

scales the same way with respect to the black hole parameters as the longest time, but the numerical factor differs.
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expression for the late time complexity is thus

C ∼ V

h̄Gτf
=
Af
h̄G

∆Lf
τf

, (3)

where Af is the cross-sectional area of the final slice. It turns out that Af equal to the horizon area AH up

to an order unity factor, so that Af/h̄G ∼ SBH can be identified with the black hole entropy, which is dual

to the CFT entropy. The remaining factor in (3) is then ∆Lf/τf . In Sec. III D we will show that, quite

generally,

∆Lf
τf
∼ κ∆t ∼ TH

h̄
∆t, (4)

where κ is the surface gravity, ∆t is the elapsed Killing time, and TH is the Hawking temperature of the

black hole, which is dual to the CFT temperature. With these results, the expression (3) for complexity

thus becomes

C ∼ THSBH

h̄
∆t, (5)

yielding the black hole dual of the expected complexification rate.

While the universality of the divisor τf is more satisfying than the previous ad hoc prescription, it should

be admitted that we have no rationale for measuring the length of the final slice in units of τf , other than

that gives the desired result. Another potential drawback is that this prescription only applies to defining

the complexity when the state at late times is thermal equilibrium, so that a ‘final’ maximal slice exists.

In a general dynamical setting, this prescription is inapplicable (although as discussed in Sec. V D it can

be applied in empty AdS, using the boost Killing field to define the notion of equilibrium). That said, as

discussed in the next section, the notion of complexity itself is more ambiguous outside of a thermal setting,

so it is not clear whether we should expect it to admit a universal holographic definition.

The CV proposal thus remains interesting, as it passes the same checks as does the CA proposal, in

some cases (regarding monotonicity on a stationary background) even better as discussed in Sec. IV 1. The

purpose of this paper is to take a closer look at various aspects of the CV proposal, attempting to sharpen

it and offer some interpretation of its definition and properties, as well as to extend the tests of it.

For both conceptual and computational reasons, we shall make use of a volume current, whose flux through

the bulk maximal slices anchored at a boundary foliation is equal to the volume of those slices. This volume

current is a unit, timelike, divergence-free vector field orthogonal to the bulk maximal foliation. Our interest

in the role of this current was inspired by recent work of Headrick and Hubeny (HH) [15], which established

a “min-flow/max-cut” theorem relating volumes of maximal slices to minimal fluxes of timelike, divergence-

free, vector fields with norm bounded below by unity (“HH flows”). In Ref. [15], it was remarked that it is

natural to relate minimization of the number of gates in defining the complexity of a state, in a dual field

theory, to minimization of the flux of an HH flow in the bulk spacetime, suggesting a “gate-line” picture of

holographic complexity. In this picture, our volume current would correspond to a “gate current”.
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Let us briefly describe here the HH theorem and its relation to our volume current. The theorem states

roughly that, given boundary sub-region A, the maximal spatial volume of any slice homologous to A is equal

to the minimal flux of an HH flow through the slice or (equivalently) through A. A given minimizing HH

flow has unit norm on the corresponding maximal volume slice, and is orthogonal to that slice, but it is not

otherwise uniquely determined. By contrast, the volume current we employ is a particular realization of an

HH flow, determined by a boundary foliation, and its flux gives the volume of each slice of the corresponding

maximal bulk foliation. That volume is not conserved, because there is flux through the cutoff boundary of

the bulk region.

Although the HH theorem assumes the spacetime is orientable and time-orientable, and assumes a maximal

volume slice exists, its proof does not directly invoke any causality assumption or energy condition on the

spacetime. By contrast, the volume current requires the existence of a foliation by maximal slices. We argue

in Appendix A that such a foliation exists if i) maximal slices exist, ii) the spacetime satisfies a causality

condition, and iii) the strong energy condition and Einstein equation hold. If the foliation is known to exist,

then the HH theorem is a simple consequence: the flux of any HH flow is lower-bounded by the maximal

volume (for a given boundary Cauchy slice), and the theorem asserts that this bound is actually saturated.

The volume current, when it exists, saturates this bound, so our results can be viewed as providing a

constructive proof of the HH theorem under certain additional assumptions.

The remainder of this paper is structured as follows. Section II confronts the ambiguity in defining com-

plexity. The notion seems most robust when applied to time evolution of thermal states, and we summarize

several reasons for thinking the volume inside a black hole horizon captures the relevant quantity. Section

III introduces the volume current, a useful tool for quantifying properties of maximal volumes and their

evolution, and obtains several results using it. One of these is evidence for the flow of complexity from UV

to IR in holographic CFTs. Section IV deduces a global inequality on maximal volumes, and uses this to

establish the monotonic increase of the rate of volume growth on a boost invariant background. Section V

probes CV duality in three settings: black hole formation with one or two shells of matter, spinning black

holes, and empty AdS viewed as a pair of thermal Rindler wedges. Section VI is a brief conclusion and

outlook. In Appendix A it is argued, assuming the existence of maximal slices, a causality condition and

the strong energy condition, that a boundary foliation determines a maximal volume bulk foliation. The

unit vector field normal to this foliation is the volume current. The remaining three appendices derive useful

technical results. For the balance of this paper we use Planck units, with h̄ = c = G = 1.

II. VOLUME INSIDE AND OUTSIDE THE HORIZON

The complexity of a pure quantum state is a measure of how many simple unitary operations, or “gates,”

it takes to produce it, starting with some reference state [16–18]. Hence, in general, complexity is defined
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only relative to the choice of reference state and the choice of gates. The original motivation for the proposal

of CV duality pertained to time development of complexity at the thermal scale in a finite temperature pure

state. In this context, the reference state could presumably be taken to be the thermal microstate at any

fixed time, and the gates could be taken to be a fixed collection of gates that act at the thermal energy and

length scales, so the rate of change of complexity is intrinsically defined without significant arbitrariness.

However, the CV proposal encounters a divergence in asymptotically AdS spacetime, where the volume

of a maximal slice diverges at spatial infinity. This divergence occurs for any state and, according to the

usual UV-IR relation in AdS/CFT duality, it would presumably correspond, according to CV duality, to a

divergent UV complexity of the CFT vacuum. While the vacuum is simply the ground state of the theory,

it is complex if considered as a state to be prepared, starting with a spatially unentangled state, by the

application of local quantum gates. Some analysis has suggested that this interpretation of the UV limit of

CV duality might be sensible [12], although the volume-complexity relation could be infinitely sensitive to

the somewhat arbitrary definition of the reference state and gates, and to sub-leading modifications of the

short distance structure of the state [19, 20].

The volume divergence has generally been dealt with in the literature by imposing a cutoff at some large

radius, and focusing on the time dependence of the volume, which does not depend on the location of the

cutoff. This corresponds, in effect, to taking the reference state to be the vacuum above the cutoff energy

scale, and some “unentangled” state below that scale. The rate of change of the volume in a stationary,

thermal state at late times is independent of the location of the cutoff, because the volume growth all happens

inside the horizon of the black hole. For this reason, and several others, it makes a lot of sense to count only

the volume behind the horizon:4

• It is only the complexity at the thermal scale that appears to have a robust significance, independent

of the arbitrary choices of reference state and gates.

• The complexity divisor of the volume, as explained in the introduction, is universal when recognized

as a free-fall time from the horizon to the final maximal slice.

• The stationary state volume growth at late time occurs behind the horizon. This was explained in a

picturesque way in [5], where it was referred to as “unspooling complexity” from the horizon.

• If the reference state is the vacuum, then only black hole states have complexity that scales as O(N2)

in the CFT. This suggests that holographic complexity (with a vacuum reference state) should, at

leading order in N , be associated only with black holes, and that the relevant volume in CV duality

should be only that located behind a horizon.

4 It was also noted in Ref. [21] that the volume divergence can be regulated by counting only the volume behind the horizon.
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• For a two-sided black hole, a natural reference state is the thermofield double, which is a “Euclidean

vacuum” for this topology. The maximal bulk slice corresponding to this state is a global time slice

invariant under time reflection (like the t = 0 slice in Schwarzschild coordinates), which does not enter

the (future or past) horizon, and therefore has zero volume behind the horizon. The volume behind the

horizon thus gives the “right” result: the complexity vanishes, since the reference state by definition

has zero complexity, but it grows if the time on one boundary is boosted relative to that on the other.

• A “second law of complexity” [22, 23] follows directly when the horizon is a causal barrier, as discussed

in the next section.

• The volume inside a white hole horizon can also contribute to the complexity, as in the shockwave

scenario discussed below. This allows for decreasing complexity, when such behavior is expected.

• In the extremal limit of rotating or charged black holes, the exterior of the horizon develops an infinitely

long throat. Regularizing the volume near the boundary (or, for that matter, anywhere outside the

horizon) would predict that the complexity of the thermofield double state diverges in the IR as

extremality is approached. This questionable feature is avoided by regularizing at horizon.

When applied in a general, time dependent setting, the proposal that complexity corresponds only to the

volume behind the horizon suffers from a major drawback, however, if we use the event horizon, because the

volume inside can grow before anything changes in the CFT, at the boundary of the maximal slice. This

is illustrated by an example in Sec. V A We therefore propose to use an “apparent horizon” as the cutoff

surface when there is time dependence. We follow the prescription, used previously in the literature, of

measuring the volume on leaves of a foliation of the spacetime by spacelike hypersurfaces that maximize the

volume inside an outer cutoff boundary. The apparent horizon is then defined as the boundary of the region

containing trapped surfaces on each leaf of this foliation. In (quasi)stationary black hole spacetimes, this

apparent horizon will (nearly) coincide with the event horizon. A component of the apparent horizon that

asymptotes to the event horizon consists of points lying on marginally outer trapped surfaces [24].

When focusing on the volume inside the horizon, we are limited to discussing the growth of complexity in

states dual to a spacetime with a horizon. This is not as restrictive as it might seem, since even empty AdS

is a thermal state, when viewed as a pair of Rindler wedges. Indeed, the much studied account of complexity

increase for the two-sided black hole can be adapted in a straightforward manner to the Rindler case, where

the relevant volume is that inside the Rindler horizon. The interpretation in this case appears to be fully

consistent with that for black holes, as we explain in Sec. V.

So far we have been referring to the volume inside the black hole horizon, which is relevant for late time

equilibrium states. However an important test for any proposed holographic dual of complexity is that it

exhibit the switchback effect [6], which brings the white hole horizon into play. The switchback effect refers

to a small time-deficit in the growth of complexity, of order twice the “scrambling time”, when a state is
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evolved backwards in time, perturbed relative to the reference state, and then evolved forwards in time.

The calculations in [6] demonstrated that the volume of maximal slices does holographically capture the

switchback effect for the thermofield double state, and in particular the maximal volume slices can traverse

the black hole region on one side of the shock, and the white hole region on the other side. In the late

time approximation used in [6], the portion of the maximal slice outside the horizons does not contribute to

the total volume, because it is null, as illustrated in Fig. 1. Hence the volume inside the black and white

FIG. 1. Shockwave geometry dual to a perturbed thermofield double state, with a maximal volume hypersurface

anchored at late time on the left and early time on the right.

hole horizons suffices to capture the switchback effect. In general, therefore, our proposal must be taken to

include the volume inside the white hole horizon. This appears somewhat natural, considering the fact that

the derivation of the switchback effect involves reversed time evolution, and the time reverse of a black hole

is a white hole.

Finally, although it appears difficult to relate the volume outside the horizon to a definition of complexity

of the state in a universal manner, the assumption that such a relation exists leads to the interesting picture

of complexity flowing from UV to IR, as explained in the following section.

III. VOLUME CURRENT

While the volume of maximal slices is a nonlocal construct, there is an associated local object, the “volume

current,” which can be used to infer the volume growth behind the horizon and the second law of complexity,

and which is suggestive the UV to IR flow of complexity. In this section we introduce the volume current,

and use it to establish several important properties of the proposed CV duality.

A volume current will be defined given a foliation of spacetime by spacelike hypersurfaces with maximal

volume. In the present application, we are interested in asymptotically AdS spacetimes, in which a maximal
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foliation is determined by a Cauchy foliation of the boundary by slices orthogonal to an asymptotic Killing

flow defining time translation. Provided that there is a unique bulk maximal slice that terminates on any

fixed boundary Cauchy slice, and provided these bulk slices do not skip over a “gap” in the bulk, the

boundary foliation induces a bulk foliation by maximal slices Σt, labeled by a parameter t.

We establish the existence of such a bulk foliation by a reasonably convincing—if not mathematically

rigorous—series of arguments in Appendix A. To rule out the possibility of gaps we will need to assume that

the timelike convergence condition (which is equivalent to the strong energy condition modulo the Einstein

equation) holds. Whether or not a global foliation exists, our construction can be applied to the portion of

spacetime prior to the final slice that is foliated without a gap. The divergence of the unit timelike vector

field v orthogonal to the bulk foliation is the trace of the extrinsic curvature K of Σt, which vanishes since

the slices are assumed to be maximal. This vector field is thus a conserved current, which we dub the volume

current associated with the maximal foliation. The volume of Σt is the flux of this current through Σt,

Vt =

∫
Σt

v · ε. (6)

(Here ε is the spacetime volume element, and the dot indicates contraction on the first index of ε.) The

construction of the volume flow v, starting from a boundary foliation, is illustrated in Figure 2.

FIG. 2. Left: Illustration of the boundary foliation Σ(τ) with 3 slices in the foliation. Right: Illustration of the

corresponding bulk foliation by maximal slices, and the volume flow.

As discussed in Sec. II, to obtain a finite volume, and hence a finite putative complexity, the integral must

be cut off at some outer boundary ∂Σt. We will continue to use the letter “V ” for this truncated volume.

A. Second law of complexity

Since the divergence of v vanishes, the change ∆V from one time slice to another is entirely accounted

for by the flux of v through the boundary, or boundaries, of that slice. If we restrict to the volume inside

the horizon, then the change is accounted for by the flux of v through the horizon. Since v is a future
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pointing timelike vector, the flux through the future event horizon is positive, and it follows that the interior

volume can only increase. When considering a spacelike portion of the apparent horizon forming a past

boundary of the trapped region, again the flux is positive. CV duality then implies that in these situations,

the complexity must increase, in accordance with the second law of complexity [22, 23]. Note that this

argument applies in arbitrary dynamical black hole spacetimes, such as a black hole formed by collapse. If,

however, the apparent horizon has a timelike section, which can happen when a black hole evaporates, and

even when positive energy conditions hold [24], then we cannot rule out a decrease in the volume enclosed.

This seems natural: when this horizon is not a causal barrier, there is no reason to expect the associated

complexity to irreversibly increase.

Note that when the region behind the horizon includes the white hole, as with the two-sided black hole with

a shockwave of Figure 1, the complexity can decrease as time increases on the side opposite to the shock [6].

Correspondingly, the volume of the maximal slice inside the white hole decreases, since the volume current

can only exit the white hole horizon.

B. Complexity flow from UV to IR

The flux of the volume current inward across the horizon suggests a picture of complexity flowing from

UV to IR, which is further corroborated by examination of the flux through other surfaces. Consider the

section of a maximal slice Σt stretching between the horizon of a black hole and the outer cutoff boundary

in asymptotically AdS spacetime. The rate of complexification of the thermal degrees of freedom should not

depend upon where the cutoff surface is placed, because that just changes the constant complexity assigned

to the degrees of freedom that are in their ground state. Holographically, this works because at sufficiently

large radius, as explained below, v is invariant under the asymptotic Killing flow. The volume between two

large radii is thus independent of time, which implies that the flux of v through the boundary is independent

of its (large) radius. Moreover, at sufficiently late times, as also explained below, v is invariant under the

Killing flow everywhere, including on and inside the horizon. The flux of volume through the horizon is

therefore equal to the flux through the outer boundary at the UV cutoff. According to CV duality, the

complexity thus flows from the UV to the IR, and accumulates at the thermal scale.

This conclusion may be related to the fact that, in a holographic CFT, thermalization proceeds from UV

to IR [25, 26]. On the other hand, it seems to be somewhat in tension with the fact that in a thermal state

the UV degrees of freedom remain unexcited. If unexcited, how could they participate in the generation

of complexity? Perhaps since their excitation is not strictly zero, but only exponentially suppressed, their

dynamics could provide the source from which the complexity unfolds. Or is complexity generated purely

from the thermal scale fluctuations? And if the latter is the case, then how can we understand the dual flow

of the volume current from large to small radii? We leave these questions to be addressed in the future.
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C. Asymptotic and late time volume flow on stationary spacetimes

At sufficiently large radius v is invariant under the asymptotic Killing flow, because the maximal slices

must asymptote to the boundary slices defining the maximal foliation, which are taken into each other by the

Killing flow. Nevertheless, in the two-sided eternal black hole spacetime, the Killing flow does not push both

boundary slices to the future together, so in general the slices of the corresponding maximal foliation are

not related by the Killing flow. However, at sufficiently late times the foliation becomes invariant under the

Killing flow. This can be seen from the fact that the maximal slices approach the final maximal slice inside

the horizon, and the final slice is taken into itself under the Killing flow. In Appendix C, we demonstrate these

claims by explicit computation with the AdS-Schwarzschild black hole. Figure 3 shows a plot of the volume

current for the BTZ black hole, based on the analytical expression derived in B 1. This figure illustrates the
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FIG. 3. Plot of the flow lines of the BTZ volume current (in solid green) on a quarter of a Penrose diagram. Left:

the flow lines are shown together with the Schwarzschild coordinate grid lines (dotted black), and the final slice (solid

blue). Right: the flow lines are shown together with the maximal slices (dashed red).

asymptotic invariance under the Killing flow at the boundary and as the final slice is approached.

The late time limit of this flow can be easily found in closed form in spherical symmetry, where it is given

by v = vt∂t + vr∂r in Schwarzschild coordinates. The normalization condition v2 = −1 determines vt in

terms of vr. At late times the components are independent of t, and the divergence free condition implies

vr = −K/r where K is some constant. K can be determined by the normalization condition grr(v
r)2 = −1

on the t = 0 line in the middle of the black hole interior region since, by symmetry, vt vanishes there. Because

we have assumed the late time limit, this must be done at the “final slice” [5, 6], which is the maximal slice

at constant r in the black hole interior. For example, in the non-rotating case of the BTZ black hole treated

in Sec. V we have

K = rfαf = r2
+/2`. (7)
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where αf is the norm of the Killing vector ∂t at rf .

The constant K gives the rate of volume flow, with respect to Killing time, per unit angle, through any

surface of constant r coordinate, e.g. the horizon. To see this, note that the volume flux is given by the

integral of v · ε pulled back to the constant r surface. In t, r, φ coordinates, ε = r dt∧dr∧dφ, so this pullback

is −rvr dt∧dφ = K dt∧dφ. This conclusion generalizes to spherical black holes in any spacetime dimension.

D. Asymptotic volume growth and complexity

For the BTZ black hole [27], the K written above can be expressed in terms of the surface gravity κ = r+/`
2

and the horizon area A = 2πr+ as

K = `κA/4π = 2`THSBH , (8)

where TH and SBH are the black hole temperature and entropy, respectively. In this way, we can see that

the late-time rate of growth is 2` times THSBH . The factor ` is the “divisor,” discussed in the introduction,

that gives the ratio of volume to complexity.

The fact that K ∝ `THSBH is not an accident. It could be anticipated from the first equality in (7). In

fact, that equality generalizes to a D dimensional spherically symmetric spacetime, where

K = rD−2
f αf , (9)

and to black holes of any size. This can be used to understand why, as mentioned in the Introduction, the

ratio of volume to complexity should be the maximal proper time from the horizon to the final slice for black

holes of any size. The factor rD−2
f is the area per solid angle of a cross section of the final slice. It turns out

that rD−2α(r) reaches its maximum not far from the horizon, so we have rf ∼ r+. The first factor in (9)

therefore scales as the horizon area per solid angle, times a numerical constant. The factor αf is the norm

of the Killing vector ∂t at the final slice. The Taylor expansion for α around the horizon is α = κτ + . . . ,

where τ is the proper time from the horizon, in the direction orthogonal to the Killing flow.5 Thus, for both

large and small spherical black holes in any dimension, the volume grows at a rate

K ∼ τfκA+ ∼ τfTHSBH (10)

where the symbol ∼ denotes equality up to numerical constant that depends on spacetime dimension and is

different for large and small black holes. Since complexity is expected to grow in the dual CFT at the rate

∼ TS, we conclude that the ratio of volume to complexity should be τf (i.e. h̄Gτf ). In section V C we show

that this reasoning also applies to the Kerr metric (with vanishing cosmological constant).

5 Quite generally, κ = |dα|horizon, where α is the norm of the horizon generating Killing vector. Usually one sees this relation

applied to the gradient in the spacelike direction from the bifurcation surface, but it can equally well be applied in the timelike

direction as done here.
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E. Maximal time from horizon to final slice

In this subsection we first compute the maximal time τf from the horizon to the final slice for hyperbolic,

planar, and spherical Schwarzschild-AdS black holes. We next give a general argument, analogous to that

used in Hawking’s cosmological singularity theorem, showing that for any black hole in a spacetime with

negative cosmological constant Λ, and satisfying the strong energy condition for matter other than the

cosmological constant, |Λ|−1/2 sets an upper bound for the value of τf .

1. Schwarzschild-AdS black holes

The value of τf for Schwarzschild-AdS black holes is given by the proper time from r+ to rf along the line

t = 0:

τf =

∫ r+

rf

dr

α(r)
. (11)

To estimate the value of this integral, we may use the Taylor expansion about the horizon. The line element

has the form ds2 = −α2 dt2 + α−2 dr2 + r2hijdx
idxj , and (dα2/dr)+ = (−2dα/dτ)+ = −2κ, so

τf ≈
1√
2κ

∫ r+

rf

dr√
r+ − r

=

√
2(r+ − rf )

κ
∼ `r+√

(D − 1)r2
+ + (D − 3)k`2

, (12)

where k = −1, 0, 1 for hyperbolic, planar, and spherical black holes, respectively. Thus for the BTZ black

hole (D = 3) or planar black holes, or hyperbolic or spherical black holes with r+ � `, we have τf ∼ `. If

instead r+ � ` and D 6= 3 and k 6= −1, then τf ∼ r+.

The case of small hyperbolic black holes should be treated separately: this case has an extremal limit, i.e.

a lower bound for r+ of the order of ` [28]. The estimate for τf above assumes that r+− rf ∼ r+ upto some

order unity factor, but r+ − rf = 0 at extremality. A computation expanding around extremality (similar

to that for the Kerr case treated below in section V C) shows that τf ∼ ` for the extremal hyperbolic black

hole.

2. Upper bound to τf set by the AdS scale

It is interesting to note that an upper bound of the form τf <∼ ` follows from a more general result. Consider

the future domain of dependence D+(S) of any achronal spacelike surface S (not necessarily a Cauchy slice

for the whole spacetime). D+(S) is itself a globally hyperbolic spacetime, so Theorem 9.4.5 in [29] tells us

that any point p in D+(S) lies on a curve that maximizes the time to S, and Theorem 9.4.3 implies that this

curve is a geodesic that meets S orthogonally, without a conjugate point between p and S. Integration of the

Raychaudhuri equation for the congruence of geodesics orthogonal to S then shows that, regardless of the

value of the trace of the extrinsic curvature of S (which is the expansion of this congruence evaluated at S),
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each geodesic must have a conjugate point within a time
∫∞
−∞ dθ/(θ2/2+Rabu

aub). To obtain this we neglect

the squared shear term in the Raychaudhuri equation, since it would only make the time shorter. If there is

a negative cosmological constant Λ = −(D − 1)(D − 2)/2`2, and if the matter stress energy tensor satisfies

the strong energy condition and the Einstein equation holds, then by neglecting the matter contribution we

obtain the upper bound π
√
D − 2/

√
−Λ =

√
2

D−1π` to the time. No point inside D+(S) can lie at a time

greater than this from S. For example, this result applies to the domain of dependence of a Cauchy slice for

an asymptotically AdS spacetime, also known as the “Wheeler deWitt patch”.

To derive an upper bound for τf , we can apply this result to the case where the achronal surface S is a

spacelike slice just inside the future horizon H of the black hole. As long as the final slice lies inside D+(H),6

we obtain the upper bound

τf ≤
√

2

D − 1
π`. (13)

For D = 3 this becomes τf ≤ π`, which is consistent with the exact result τf = π`/4 obtained in section V B

for the rotating BTZ black hole.

IV. GLOBAL VOLUME INEQUALITY AND COMPLEXIFICATION RATE MONOTONICITY

In this section we discuss a global inequality relating the volume on different slices, which leads to an

inequality on mixed partial derivatives with respect to boundary time. On a boost symmetric background,

this allows us to obtain an inequality for the second time derivative of the volume, which implies that the

complexification rate grows monotonically on boost invariant black hole backgrounds. We thus recover from

a general viewpoint this fact found previously using explicit computations with eternal black holes in AdS.

To derive the global volume inequality, we need only use the definition of maximal slices; no energy condition

or other additional ingredient is needed. Consider for concreteness a compact box in an eternal black hole

spacetime (Figure 4), with the vertical sides of the box taken to be some near-boundary cutoff. Let t1, t2

be two times on the left cutoff (with t1 < t2), and t3, t4 be two times on the right cutoff (with t3 < t4). The

inequality then says that

Vol(t1, t3) + Vol(t2, t4)−Vol(t1, t4)−Vol(t2, t3) ≥ 0, (14)

where Vol(t1, t3) is the maximal volume between time t1 on the left and time t3 on the right, etc. Note that,

even though each of the four maximal slice volumes diverges as the cutoff is sent to the boundary, the linear

combination in (14) is UV-finite.

To establish the inequality, observe that the two dashed orange slices in Fig. 4 intersect each other, and we

can divide them into four segments, each connecting the intersection with one of the four boundary times.

6 If D+(H) does not contain everything inside the event horizon, there is a Cauchy horizon, which is presumably unstable to

formation of a singularity, eliminating the Cauchy horizon.
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t1

t2

t3

t4

FIG. 4. An SSA-like inequality is obeyed between the four maximal slices shown (solid red and dashed orange).

By maximality, we know that Vol(t1, t3) is greater than the sum of the volumes of the two lower orange

segments. Similarly, we know that Vol(t2, t4) is greater than the sum of the volumes of the two upper orange

segments. The sum of these two inequalities yields (14).

This example of a global volume inequality can be generalized to a general bulk spacetime, with one or

more boundary components. We illustrate this in Figure 5 for a spacetime with one boundary. Let σ1 and

σ2 be two Cauchy slices of the boundary, and let Σ1 and Σ2 be the corresponding maximal slices. (As

before, we regulate the volume by placing a cutoff surface in the asymptotic region.) Assuming the bulk

is time orientable, it admits a foliation by timelike curves, which also extends to the boundary. Each of

these curves intersects each of the Cauchy slices once. On the boundary define two new piecewise smooth

Cauchy slices σ− and σ+, consisting of the first and second intersection points respectively, and similarly

define two new bulk slices (which are also only piecewise smooth), Σ− and Σ+. Then the boundary of Σ±

is σ±, and Σ± is generally not the maximal volume slice with this boundary. Generalizing the previous

notation, let Vol(σ) denote the maximal volume for a slice bounded by σ, and now let Vol(Σ) be the

volume of the bulk slice Σ. Then we have Vol(σ±) ≥ Vol(Σ±), and addition of these inequalities yields

Vol(σ+) + Vol(σ−) ≥ Vol(Σ+) + Vol(Σ−). Moreover, Vol(Σ+) + Vol(Σ−) = Vol(Σ1) + Vol(Σ2), simply

because Σ+ ∪ Σ− = Σ1 ∪ Σ2, so it follows that

Vol(σ+) + Vol(σ−)−Vol(σ1) + Vol(σ2) ≥ 0. (15)

To recover the previous case from this generalization, take σ1 to be the two-boundary slice consisting of the

union of the t1 and t4 slices, and take σ2 to be that consisting of the union of the t2 and t3 slices.
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FIG. 5. On the left are two Cauchy slices, σ1 (in continuous blue) and σ2 (in dashed blue), on the boundary of the

Poincaré patch of an asymptotically AdS spacetime. On the right the corresponding σ+ and σ− are in dashed blue

and continuous blue, respectively.

1. Monotonicity on a boost-symmetric background

We next explain how inequality (14) implies monotonic growth in time of the complexification rate.7 Before

showing this, let us discuss the physical significance of this monotonicity property. Black holes are expected

to excel at scrambling quantum information and, in particular, should complexify the fastest. Thus, one can

expect that their late-time rate of complexification (once transient effects have died out) saturates quantum-

information bounds, and in particular should be greater than the complexification rates at earlier times.

The monotonicity property coming out of CV-duality is in agreement with this general expectation. By

contrast, CA-duality was recently discovered to violate this monotonicity property [9, 30], perhaps putting

into question that particular proposal.

We now take the the infinitesimal limit of inequality (14), setting t1 = tL, t2 = tL + δtL, t3 = tR,

t4 = tR + δtR. To leading order in small quantities, we find:

Vol(tL, tR) + Vol(tL + δtL, tR + δtR)−Vol(tL, tR + δtR)−Vol(tL + δtL, tR) =
∂2Vol

∂tL∂tR
δtLδtR. (16)

Therefore the global inequality (14) implies positivity of the mixed partial derivative:

∂2Vol

∂tL∂tR
≥ 0. (17)

In terms of the new variables t± = tL ± tR, this inequality becomes

∂2Vol

∂t2+
− ∂2Vol

∂t2−
≥ 0. (18)

For an eternal black hole, the boost symmetry implies that the maximal volume cannot be a function of t−

[6]. We thus end up with the simple statement:

∂2Vol

∂t2+
≥ 0. (19)

7 We thank Adam R. Brown for suggesting the following argument.
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which implies that the first derivative of Vol with respect to t+ (or equivalently, with respect to either tL ot

tR with the other one kept fixed) is monotonic. Replacing the volume by the complexity C, this implies the

monotonic increase of the complexification rate discussed above.

Note that inequality (14) does not imply monotonicity of the complexification rate for a general bulk

spacetime, since we used the boost symmetry of a 2-sided black hole to deduce it. Nevertheless, we can

take the infinitesimal version of the inequality (15) for a generic spacetime, and derive a condition similar to

the positivity of the mixed partial derivative (17). To this end, consider the case where the two boundary

Cauchy slices σ1 and σ2 coincide except on two small disjoint bumps to the future, one on σ1 and one on σ2.

Expanding to leading order in the size of the bumps, we find that the “off-diagonal” part (since the bumps

are disjoint) of the second functional derivative of the maximal volume Vol(σ) with respect to σ variations

is nonnegative.

V. QUENCHES, ROTATION AND ADS-RINDLER: FURTHER PROBES OF CV DUALITY

CV duality has been primarily probed in the setting of the eternal black hole, where interesting time

dependence is introduced either by examining foliations that are not Killing time slices, or by introducing

shockwave perturbations. In this section we extend the set of examples, by considering multiple quenches,

where the black hole temperature changes, spinning black holes, where the angular momentum provides

an extra parameter on which the dependence can be checked, and AdS-Rindler spacetime, where the time

dependence of the vacuum complexity in the Rindler wedge is seen to be equivalent to that in a black hole

spacetime.

A. AdS-Vaidya: event horizon vs apparent horizon

The time dependence of holographic complexity has been studied for quenched systems, i.e. systems into

which a finite energy density is injected, using the AdS-Vaidya solution [19, 21, 31, 32]. In this subsection,

we compare the growth of the volume inside the horizon for an AdS-Vaidya spacetime in the thin shell limit,

using different definitions of the volume cutoff, and we extend existing studies to the case of two infalling

shells.

In Section II we discussed several reasons supporting the notion that volume inside the black hole horizon

is perhaps a more robust measure of complexity of the thermal state than is the volume of a global maximal

slice with a cutoff at large distances from the black hole. When the black hole forms from collapse, the

degeneracy between different definitions of the horizon is lifted, hence we should examine which (if any) is

more appropriate for CV duality. In particular, while the absolute event horizon remains a null hypersurface

defined teleologically as the boundary of the past of future null infinity, we shall also consider the apparent

horizon, defined here as the boundary of the region containing outer trapped surfaces on the leaves of the
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maximal foliation An apparent horizon defined this way is an example of a holographic screen [33, 34], i.e.

a hypersurface foliated by marginally trapped surfaces. Recent work [35, 36] has shown that the area of a

leaf of such a foliation is related to a certain coarse grained holographic entropy, which lends support to the

idea that the volume inside such surfaces might be directly related to complexity [37].

When the spacetime is time dependent, the maximal time from the horizon to the final slice (the “com-

plexity divisor” of the volume) in general becomes time dependent, and in that context it might well make

more sense to measure the time from the apparent horizon rather than from the event horizon. We shall

make no attempt here to determine which precise extension of the concept is more appropriate. Instead,

we will just address the case where the black hole is either the BTZ black hole in D = 3 dimensions, or in

higher dimensions is large enough so that the time ∼ ` is the always the relevant one.

1. Single quench

Consider, then, a black hole formed by an infalling shell in AdS. If the event horizon forms “at the same

time” as the time on the boundary when the shell starts to fall in, i.e. the time at which an external agent

injects some energy into the CFT ground state, then the maximal slice volume inside the horizon remains zero

until the injection time, and starts growing after that. This would be consistent with the general expectation

that the CFT state starts to complexify after the energy injection. However, the horizon forms before the

injection time if the final horizon radius is greater than the AdS length scale, and after the injection time if

it is less [38].

To illustrate this, let us work for simplicity in the in the thin-shell limit, and in three spacetime dimensions.

The BTZ-Vaidya metric in (r, v) coordinates reads:

ds2 = −f(r, v)dv2 + 2dvdr + r2dφ2 (20)

f(r, v) = 1 + r2 −Θ(v)(1 + r2
+) (21)

where Θ is the unit step function. This metric describes a spherical shell at v = 0 collapsing to form a black

hole. To draw the conformal diagram, we need to pass to conformally compactified coordinates (R, T ) (see

[38] for the coordinate transformation). The metric becomes:

ds2 =
−dT 2 + dR2

cos2R
+ r(T,R)

2
dφ2 (22)

r(T,R) =


(1−r2+) sinR−(1+r2+) sinT

2 cosR if R+ T > 0

tanR if R+ T < 0

(23)

Fig. 6 shows the conformal diagrams for three choices of horizon radius (larger than L, equal to L and

smaller than L). The center of AdS is at R = 0, the boundary is at R = π
2 , and the singularity is at
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(1−r2
+) sinR = (1+r2

+) sinT . As illustrated in Fig. 6, the horizon forms at the same time T as the injection

time on the boundary only in the special case when the horizon radius of the final black hole is exactly equal

to the AdS length.

FIG. 6. Conformal diagram for the BTZ-Vaidya spacetime in the thin-shell limit for three representative choices of

the horizon radius r+ (left: r+ = 5L, center: r+ = L, right: r+ = L/5). For all three panels, the center of AdS, the

infalling shell and the boundary are in continuous black, the horizon is in dashed black and the singularity is in red.

Moreover, on the left panel, we depict a maximal slice anchored at a boundary time to the past of the infalling shell

in blue. The portion inside the event horizon is in continuous blue, and the portion outside the horizon is in dashed

blue.

Now consider the large black hole case, and consider a constant T slice to the past of the infalling shell,

where the geometry is locally AdS. This slice is invariant under the T reflection isometry, so it has vanishing

extrinsic curvature, hence is maximal. We depict such a maximal slice in blue on the left panel of Fig. 6.

Clearly the portion inside the horizon starts growing even before the energy injection occurs on the boundary.

The apparent horizon for Vaidya-BTZ consists of two segments in the conformal diagram (illustrated in

7). One segment is the event horizon r = r+ in the BTZ portion of the spacetime, and the other segment is

the infalling shell itself. The interior of the apparent horizon (i.e. the trapped region) is shaded in light blue

in Fig. 7. It is clear that the volume inside the apparent horizon can grow only after the injection occurs,

with a delay because the maximal slice does not have any portion inside the light blue region of Figure 7

immediately after injection.

In Fig. 8 we plot the volume inside the horizon as a function of the boundary time, and compare with the

volume inside some large cutoff near the boundary, as well as with the volume inside the apparent horizon

(see below). The plots on the left are for a large black hole with r+ = 5`, while those on the right are for
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FIG. 7. The region inside the apparent horizon is shaded in blue.
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FIG. 8. Plot of volume versus boundary time, for a large black hole (left) with r+ = 5� and a small black hole

(right) with r+ = �/5. In both panels, the blue curve is the volume inside some large cutoff, the red curve is the

volume inside the event horizon and the brown curve is the volume inside the apparent horizon. The boundary time

is measured in units of �.

a small black holes with r+ = �/5. (To produce this plot, we solved numerically for the maximal slices; the

details are explained in Appendix D.) Several features of this figure are worth remarking upon:

• The volume inside a near-boundary cutoff is shown as the blue curve. It starts to grow at the injection

time. For a large black hole, the volume inside horizon, shown by the red curve, starts growing before

the injection time.

• For a large black hole, the volume inside a near-boundary cutoff (blue curve) grows at essentially the

late-time rate as soon as the energy is injected. For a small black hole, the growth rate starts out

higher, then decreases to to late time rate.

• The growth rates all converge at late time both for large and small black holes. This verifies the

expectation that all late time growth of volume occurs inside the horizon for a one-sided black hole, as
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it does for a two-sided one.

• From a geometrical viewpoint, there are two distinct regimes for the volume inside the event horizon:

it may be contained entirely inside the pure AdS part of the spacetime, or it may include a part in the

AdS portion and a part in the BTZ portion. There is a critical boundary time at which the former

regime transitions to the latter one, on the maximal slice, A priori it seems that the volume curve

might have a kink at this transition, however inspection of the red curves suggests that the derivative

is actually continuous at the transition.

• The brown curves show the volume inside the apparent horizon, which is always the last to start

growing. In particular, no growth occurs before injection, and in fact there is a delay between injection

and the onset of growth of the volume inside the apparent horizon. This delay is perhaps related to

a thermalization timescale. As shown in [25, 26] thermalization takes a time on the order of the AdS

length scale, with specific behavior depending on the scale at which thermalization is probed.

• The rate of change of the volume inside the apparent horizon starts out higher than the late-time

rate, and then approaches the late-time value from above. This is contrary to the monotonic increase

expectation. This decreasing behavior was also observed in [31]. Moreover, the longest time to the final

slice is the same from all points on the outer portion of the apparent horizon (which coincides with the

event horizon), and is longer than any other time from inside the horizon, so there is presumably no

additional time dependence coming from the divisor τf in the complexity formula.

2. Two quenches

In this subsection we consider BTZ-Vaidya with two infalling shells. The field theory picture is that energy

is injected twice into the CFT. After the first injection thermalizes, we expect a linear growth of complexity

at a rate proportional to the energy injected, since TS ∝ E. After the second injection, the system now has

more energy, so we expect the complexification rate to increase.

If the second injection occurs sufficiently far to the future of the first one, so that the complexity has

enough time to reach the linear growth regime before the second injection, CV duality would imply that

the plot of maximal volume versus time will consist of three linear regimes (zero slope, a finite slope, and a

bigger finite slope).

The metric is still given by eq. (20), except that the function Θ(v) is no longer a unit step function, but

a “double step function”:

Θ(v) = aθ(v) + (1− a)θ(v − b) (24)

where a is a real number between 0 and 1, b is a positive real number, and θ is the unit step function. The
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function f(r, v) becomes:

f(r, v) =


1 + r2 v < 0

r2 −R2 0 < v < b

r2 − r2
+ b < v

(25)

with R2 ≡ a(1 + r2
+) − 1. Thus, we have AdS for time v < 0, and the usual BTZ with horizon radius r+

for b < v. In the intermediate regime, 0 < v < b, we have two qualitatively different cases depending on the

sign of R2 (it need not be positive): If R2 > 0 we have a BTZ black hole with horizon radius R, while if

−1 < R2 < 0 we have a “conical defect” geometry.8

FIG. 9. Eddington-Finkelstein diagram of the BTZ-Vaidya solution with two infalling shells. The abscissa and

ordinate for the plot are ρ = arctan(r) and t = v − ρ, respectively. The two infalling shells, the center of AdS, and

the boundary are in thick black, the singularity is in solid red, the constant radius portion of the apparent horizon

between the shells is in dashed blue, the event horizon is in short-dashed red, and the maximal slice anchored at late

boundary time is shown in continuous blue. The apparent horizon is the boundary of the grey shaded region.

We have solved numerically for the maximal slices and their volume with the parameter choice a = 1/2,

b = 1 and r+ = 2 (see appendix D for the technical details). The shape of a maximal slice anchored at late

time on the boundary is depicted using an Eddington-Finkelstein diagram in Fig. 9. The effect of the outer

8 This conical defect geometry is also a possibility in the single-shell case. This can be seen as follows: the stress-energy tensor

of the single-shell AdS-Vaidya in three dimensions is Tvv =
1+r2+
2r

Θ′(v). If −1 < r2+ < 0, we do not have a black hole final

state, yet the null energy condition is still obeyed. This is the conical defect regime.
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shell is to push the slice further from the singularity, which can be explained intuitively as follows: the final

slice for the BTZ-Vaidya should approach the final slice of the eternal BTZ black hole (with the same total

mass) at late time, which is a constant radius slice with r ∝ r+. Since the effect of the outer shell is to

increase the horizon radius, it also pushes the final slice further from the singularity.

In Fig. 10, we plot the volume of the portion of the maximal slice lying inside the apparent horizon as a

function of the boundary time tb at which the slice is anchored, with the same parameter choice used for Fig.

9. Note that for a brief period of time after the maximal slice crosses the point where the second shell meets

the apparent horizon, the slice has two disconnected parts lying inside the apparent horizon, separated by

an annular region falling outside the apparent horizon.

It would be interesting to consider similar double quenches but in D ≥ 4 dimensions, with spherical black

holes of different sizes, so that the time dependence of the time to final slice divisor τf might come into play.
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FIG. 10. Plot of the maximal slice volume inside the apparent horizon in a Vaidya spacetime with two shells. The

kinks occur when the maximal slice crosses the points where the first and second shells meet the apparent horizon.

B. Rotating BTZ black hole

A further probe of CV duality is provided by considering rotating black holes. A rotating black hole is

dual to a rotating thermal CFT state. The complexity in such a state should presumably grow, with respect

to time in the rotating frame, as the entropy of the state times the temperature Trot in that frame, since that

is the frame in which thermal equilibrium is established. That is, one would expect that dC/dtrot ∼ TrotS.

While the CFT entropy is frame independent, and is thus equal to the dual black hole entropy, Trot is not

equal to the dual black hole temperature TBH. Considering that the thermal frequency defines a clock in the

rotating frame, there is a time dilation shift of the temperature, and we have Trot dtrot = TBH dtBH, where

dtBH is the Killing time increment in the asymptotic rest frame of the black hole. It follows that the rate

of complexity growth can equally be expressed as dC/dtBH ∼ TBHSBH. We will now show, for the case of a

rotating BTZ black hole, that CV duality indeed predicts this complexity growth rate at late times.
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The metric for the rotating BTZ black hole can be written as

ds2 = −α2dt2 + α−2dr2 + r2(dφ− Ωdt)2, (26)

with

α2 =
(r2 − r2

+)(r2 − r2
−)

r2`2
, Ω =

r−r+

r2`
, (27)

and the surface gravity is κ = (r2
+ − r2

−)/`2r+. The “final slice,” i.e. the Killing-invariant maximal slice

inside the horizon lies where (rα)′ = 0, which is at rf given by r2
f = (r2

+ + r2
−)/2. This is a cylindrical

surface, with induced metric ds2 = −α2
fdt

2 + r2(dφ − Ωfdt)
2, and volume (area) form rfαf dt ∧ dφ, where

αf :=
√
−α(rf )2. The volume of a dt section of the slice is thus dV = 2πrfαf dt, so the rate of change of

the total volume inside the horizon, growing at both ends, is dV/dt = 4πrfαf . The longest time path from

the outer horizon to the final slice has length

τf =

∫ r+

rf

α−1dr = π`/4, (28)

which is the divisor we use in relating the complexity to the volume. (Note that, unlike in higher dimensions,

this time is independent of the horizon radius, even for small black holes. In the next section we consider

the Kerr black hole in four dimensions, and find that one still obtains TS even for small black holes, when

the time to the final slice is used as the divisor.)

The rate of change of the complexity with respect to t is thus

dC
dt

=
4

π`

dV

dt
=

16rfαf
`

=
8(r2

+ − r2
−)

`2
= 8κr+ = 32TBHSBH. (29)

As explained above, TBHSBH is equivalent to the rate TrotSrot, which is what one would expect from a

thermal state [4]. This is a nontrivial check, since the rotating black hole possesses another dimensionless

parameter, r−/r+, on which the result might have depended.

We note also that, in the case of the rotating BTZ black hole, the this complexification rate from “com-

plexity = volume” is interestingly the same as the one found for “complexity = action” [8]: the late-time

rate of growth is proportional to r2
+− r2

− in both cases. Here we emphasize the proportionality of this result

with THSBH, whereas Ref. [8] emphasizes the proportionality with M − ΩJ , noting that the late-time rate

of growth is slowed down compared to M , due to the presence of the conserved charge J .

C. Kerr black hole

Next, we discuss rotating black holes in higher dimensions. This case is substantially more complicated to

study than the rotating BTZ one due to the lack of spherical symmetry, and this may be why it has not been

studied at all in the literature in the context of CV-duality.9 We will consider the case of the Kerr solution

9 The volume of constant radius slices inside the Kerr horizon has been studied previously in [39].
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in four spacetime dimensions, since the asymptotically flat case is somewhat simpler, and since its maximal

slices have already been studied to some extent in [40]. Our aim is to check whether the complexification

rate (with the time to the final slice divisor taken into account) continues to be of the order of THSBH.

The Kerr metric for a black hole of mass M and angular momentum aM is given in Boyer-Lindquist

coordinates by

ds2 = −Σ∆

B
dt2 +

B

Σ
sin2θ (dφ− Ωdt)

2
+

Σ

∆
dr2 + Σdθ2, (30)

where

Σ = r2 + a2 cos2θ, ∆ = r2 − 2Mr + a2, B = (r2 + a2)2 − a2∆ sin2θ, Ω = 2aMr/B. (31)

The inner/outer horizons r± are the roots of ∆ = (r − r+)(r − r−), r± = M ±
√
M2 − a2.

A general axially symmetric maximal slice is described by some function r(t, θ). The final slice is a late

time limit, so is t-independent due to t-translation symmetry of the background, and is therefore described

by a function r(θ) which extremizes the volume. The volume element on such a slice between the inner and

outer horizons (where ∆ < 0) is √
Σ(|∆| − r2

,θ) sin θ dt ∧ d ∧ dθ ∧ dφ (32)

As argued in [40], r(θ) must lie between two values, rmin and rmax, which are the extrema of Σ∆ with

respect to r at θ = 0 and π/2, respectively, and which are very close to each other for all values of the spin

parameter a/M . The final slice therefore comes very close to being a slice of constant r. We will adopt

rf ≡ rmax for that approximate constant value of r, which is given by

rf =
3

4
M
[
1 +

√
1− 8a2/9M2

]
. (33)

This radius is never parametrically different from the horizon radius r+: for a = 0 it is 3r+/4, while for

extremal spin it is r+. The volume element on this cylinder is given by

εf = αf dt ∧ Af , αf =

√
Σf |∆f |
Bf

, Af =
√
Bf sin θ dθ ∧ dφ. (34)

The volume of a dt section on the final slice is thus dV = dt
∫
αfAf , where the integral is over a constant t

slice of the cylinder.

Next let us evaluate the maximal time to fall from the horizon to the final slice, τf . Since the coefficient

of dr2 in the line element (30) is negative, while those of the other three terms are positive, the longest time

is clearly attained with dt = dθ = dφ = 0. Moreover, the maximum of these is attained at θ = 0, so

τf =

∫ r+

rf

dr

√
r2 + a2

|∆|
(35)
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Our proposal for the t derivative of the holographic complexity due to growth on one side of the final cylinder

is thus

dC
dt

=

∫
αfAf
τf

. (36)

Since rf ∼ r+, the rate (36) will agree with ∼ THSBH provided αf ∼ κτf , where κ is the surface gravity. If

αf were the norm of the horizon generating Killing vector ∂t + Ω+∂φ as before, then this last relation would

again follow as the first order Taylor expansion, as explained in the introduction. However, in fact, αf is the

norm of ∂t + Ωf∂φ. Nevertheless, again, because rf ∼ r+, these two vector fields are not so different, and so

it is plausible that indeed αf/τf ∼ κ.

To test this relation at the extreme, we define the parameter ε =
√

1− a2/M2, and expand around

extremality, ε = 0. Expanding to lowest order in ε, using units with M = 1, we have r± = 1± ε, rf = 1 + ε2,

and ∆ = (r − 1)2 − ε2, hence ∆f = −ε2. Thus, in computing the volume to lowest order, we may set r = 1

in all expressions other than ∆. In particular, αfAf → ε
√

1 + cos2 θ sin θ dθ ∧ dφ. At this lowest order in ε

we therefore have

dV/dt = 2π[
√

2 + sinh−1(1)]ε, (37)

and

τf =
√

2

∫ 1+ε

1

dr√
ε2 − (r − 1)2

=
π√
2
, (38)

so our proposal for the complexification rate yields

dC
dt

= 2
√

2[
√

2 + sinh−1(1)]ε ≈ 6.49ε. (39)

On the other hand, the temperature and entropy of the Kerr black hole are

TBH =
1

2π

√
M2 − a2

r2
+ + a2

, SBH = π(r2
+ + a2), (40)

so it follows that

THSBH =
1

2

√
M2 − a2 → 1

2ε. (41)

The important thing is that (39) and (41) are both O(ε), so that their ratio approaches a nonzero pure

number in the extremal limit. While the ratio depends on the spin parameter a/M , it is does not go to

zero or infinity as this parameter goes to zero. Finally to exhibit the ratio over the full parameter range,

we evaluated it numerically. As expected, the plot in Fig. 11 of the ratio of these quantities does not vary

substantially over the whole range of a/M . It would be interesting to generalize this analysis to Kerr-AdS,

in any spacetime dimension.
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FIG. 11. Plot of (rate of change of final slice volume ÷ longest time from the horizon to the final slice) :(THSBH),

versus the spin parameter for a Kerr black hole in four spacetime dimensions. The ratio is roughly constant over the

entire range from nonspinning to maximal spin.

D. Rindler wedge complexity growth

It has previously been observed that many aspects of black hole thermodynamics and horizon entanglement

apply to acceleration horizons, and specifically to Rindler horizons in flat or AdS spacetimes. In particular,

in the AdS/CFT setting, the CFT can be partitioned in to two equal halves, and in the ground state the

corresponding bulk entanglement wedges are Rindler wedges, separated by a horizon and future and past

“interior” regions analogous to the two-sided black hole interior. Each half of the CFT vacuum is a thermal

state with respect to the Hamiltonian generating the conformal boost symmetry of its diamond-shaped

domain of dependence [41, 42]. The analogy with the two-sided black hole is close enough that we may

expect the complexity of the thermal state to grow in time when boosting toward the future on both halves

of the partition (as opposed to boosting one side to the future and the other to the past). Moreover, the

expected growth rate would be TS, where T is the conformal boost temperature and S is the (entanglement)

entropy. We now demonstrate that this is indeed the case for AdS3/CFT2.

The metric of AdS in Rindler coordinates is actually just the BTZ metric (26), with r− = 0 and r+ = `

[28]. The maximal foliation of interest is defined by constant Rindler time slices of the boundary, and the

final slice of this foliation therefore meets the boundary at the Rindler horizon. Fig. 12 displays a plot of this

slice in global coordinates, which lies at rf = r+/
√

2 as seen in the previous subsection (V B). The results of

that section also show that the rate of complexification at late times, measured with respect to the conformal

boost time, is ∝ TS, where T = 1/2π is the Unruh temperature, and S is the (infinite) Bekenstein-Hawking

entropy of the Rindler horizon. The dual quantities in the CFT are the conformal boost temperature, and

the entanglement entropy of the semicircle, as implied by the Ryu-Takayanagi formula. The state on the

semicircles is also conformally equivalent to a thermal state on two-dimensional Minkowski space. In higher

dimensions it would be conformally equivalent to a thermal state on a static hyperbolic space [43].
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FIG. 12. A plot of the final slice of AdS-Rindler embedded into global AdS. Here we use global coordinates for AdS,

in which the metric reads ds2 = L2(− cosh2 ρdτ2 + dρ2 + sinh2 ρdφ2), except that we have compactified the radial

coordinate by applying the arctan function (in other words, the boundary of the cylinder is at radius π/2). The line

running across the cylinder is the bifurcation line of the Rindler horizon.

VI. CONCLUSION

In this paper, we proposed that the apparent lack of universality in the CV duality for large and small

black holes is removed if one identifies the complexity with the volume measured in units of the maximal

(free-fall) time τf from the horizon to the final slice times Planck area. The distance cτf is ∼ the AdS radius

for spherical black holes large compared to the AdS radius, and it is ∼ the horizon radius for small black

holes, thus accounting in both cases for the divisor that had been previously introduced by hand in order for

the complexification rate to match the temperature-times-entropy expectation. We also checked that this

prescription matches TS for the rotating BTZ black hole, and the Kerr black hole in four dimensions, for

all spin parameters. While this does seem an improvement over the previous ad hoc assignment, it should

be admitted that we have no reason from first principles for thinking the time τf should be relevant, other

than that it can be related to the surface gravity and redshift factor at the final slice, as explained in the

Introduction and in Sec. III D. Moreover, τf is of course only defined when a horizon and final slice are

present, so is of no use otherwise. In this respect, CA duality appears much more universal. However, it is

not so clear whether the notion of complexity and its growth should be expected to have a universal meaning,

outside of thermal states, because then the dependence on the arbitrary choice of reference state and gates

with which to define the complexity may be more severe.

We proposed that to capture complexity at the thermal scale one should count only the volume inside the

horizon, and introduced the “volume current,” orthogonal to a foliation of spacetime by maximal slices. This

current is a divergence-free vector field, whose flux through the slices of the foliation measures their volume.

This flux picture suggests that there is a transfer of the complexity from the UV to the IR in holographic

CFTs, which is reminiscent of thermalization behavior decuced using holography. It also naturally gives a
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second law for the complexity when applied at a black hole horizon. We further showed how the volume

current is a useful tool for establishing various properties of the volumes of a maximal foliation, established

a global inequality on maximal volumes that can be used to deduce the monotonicity of the complexification

rate on a boost-invariant background, and probed CV duality in the settings of multiple quenches, spinning

black holes, and Rindler-AdS. Finally, we established the existence of a maximal foliation without gaps (on

which the existence of the volume current depends) provided that there exists a maximal slice anchored

at each boundary slice, and assuming a causality condition, the strong energy condition, and the Einstein

equation.

Taken together, these results demonstrate the mathematical and physical utility of the notion of volume

current associated to a maximal foliation. In the setting of CV duality it is tempting to think of the current

as a “gate current” [15]. Perhaps this could be given a more concrete meaning in the context of tensor

network models of bulk spacetime.
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Appendix A: Boundary foliation induces maximal bulk foliation

We advertised in Section III that a foliation of the boundary of AdS induces a foliation by globally maximal

volume slices in the bulk (assuming there exists such a slice terminating on each boundary slice). To establish

this, we first show that, if two boundary slices do not intersect, then the corresponding bulk maximal slices10

do not intersect. Next we argue that the (nonintersecting) bulk slices fail to be a foliation only if there are

two distinct maximal slices anchored at the same boundary slice, and we prove, assuming the strong energy

condition and the Einstein equation, that this cannot happen. In order to deal with finite volumes, we take

the boundary to lie at a finite cutoff surface, which can be taken to infinity at the end.

The argument works by contradiction. Suppose the maximal slice anchored at the upper boundary slice

dips down sufficiently low in the bulk that it intersects the maximal slice anchored at the lower boundary

slice (see Figure 13). Then we can write one maximal slice as the union of components a and b, and the other

maximal slice as the union of components c and d as in the figure. If Vol(b) < Vol(d), then Vol(ab) < Vol(ad),

contradicting the maximality of the (ab) slice. If Vol(d) < Vol(b), then Vol(cd) < Vol(bc), contradicting the

10 In this appendix, “maximal” will always by default mean “globally maximal”.
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a a

c c
b

d

FIG. 13. Hypothetical situation where two maximal slices anchored on different boundary Cauchy slice intersect.

maximality of the (cd) slice. The only possibility remaining is Vol(b) = Vol(d). If that is the case, then (ad)

and (bc) would also have to be maximal slices. But they cannot be maximal, since they have corners, and

by rounding off the corners their volume can be increased. If the slices are tangent, rather than intersecting

transversally, this “rounding the corners” argument is not applicable, but by moving the boundary slices

slightly closer together, one would expect that the tangency generically becomes a transversal intersection,

which would be ruled out by the argument already given.11 Although not quite a rigorous argument, this

seems adequate for our present purposes.

Now if the bulk maximal slices do not intersect, then the boundary foliation will induce a bulk foliation

unless there are gaps where the family of maximal volume slices jumps discontinuously across some spacetime

region. Since the metric is assumed continuous, however, the maximal volume function itself cannot jump

discontinuously as the boundary slice is pushed toward the future. Hence, if a gap does occur there must

be two maximal slices with the same volume, anchored at the same boundary slice. We now argue that this

cannot happen, given a causality assumption, the Einstein equation, and the strong energy condition. In

fact, the argument will establish a stronger result: there cannot be two extremal bulk slices with the same

boundary.

Suppose there are two such slices, Σ1 and Σ2, with Σ2 to the future of Σ1, with the same, co-dimension-

2 boundary, and both with TrK = 0. While the domains of dependence D1 and D2 of Σ1 and Σ2 are

each automatically globally hyperbolic, we need to assume that Σ2 ⊂ D1 and Σ1 ⊂ D2, which amounts to

assuming that the domains of dependence coincide, D1 = D2. This condition “obviously” holds for “normal”

causal structures. Under this causality assumption, we can invoke Theorems 9.4.3 and 9.4.5 and Lemma

8.3.8 of Ref.[29] to infer that every point p on Σ2 lies on a geodesic that maximizes the proper time from

11 This argument is essentially an adaptation to Lorentzian signature of a similar argument presented in [44, 45] for Euclidean

signature in the context of holographic entanglement entropy, establishing the property of “entanglement wedge nesting” on

a static slice.
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p to Σ1, meets Σ1 orthogonally, and has no conjugate points between p and Σ1. The congruence of these

geodesics maps (possibly a subset of) Σ1 onto all of Σ2. The expansion θ of the congruence at Σ1 is equal

to TrK, which vanishes by assumption. The Raychaudhuri equation together with the timelike convergence

condition or, assuming the Einstein equation, the strong energy condition, then implies that θ is decreasing

everywhere along the congruence.12 Moreover, θ cannot go through −∞ before reaching Σ2 since, as stated

above, the time-maximizing curve has no conjugate points between p and Σ1. It follows that θ is negative

everywhere, which implies that the geodesic flow is volume-decreasing. That is, the volume of a small ball

carried along by the flow will decrease, as measured in the local rest frame of the flow. Furthermore, since

the geodesics do not generally meet Σ2 orthogonally, the volume of a small patch of Σ2 on which the flow

lands will be less than the volume of the small ball carried by the flow. It follows that the volume of Σ2 is

less than the volume of the pre-image of Σ2 in Σ1 under this flow, and a fortiori the volume of Σ2 is less

than that of Σ1. Similarly, we can argue the opposite, and thus we reach a contradiction, since the volume

of Σ2 cannot be both less than and greater than that of Σ1. The initial assumption is therefore false: there

cannot be two extremal slices with the same boundary. Together with the previous results, this implies

that a boundary foliation determines a maximal bulk foliation without gaps. Note that the latter need not

completely cover the bulk, however. For example, as discussed in the text, the maximal slices for a two-sided

black hole do not extend beyond a final slice, located inside the event horizon.

We established the uniqueness property of extremal slices with a given boundary using a global argument

in which the existence of time maximizing curves without conjugate points played a key role. However, it was

briefly mentioned by Witten, in a conference talk [46], that uniqueness can be proved in a different fashion,

namely, by (i) showing that the volume of any extremal slice is a local maximum with respect to small

deformations, and (ii) arguing that if there were two local maxima, there would necessarily also be a saddle

point of the volume, contradicting the fact that all extremal slices are local maxima of the volume. The

reasoning for point (i) is simple and local: the expansion of the congruence of timelike geodesics orthogonal

to any extremal slice starts out zero at the slice, and the strong energy condition (together with the Einstein

equation) implies that it is negative and decreasing off the slice. The transversal spatial volume therefore

decreases along the congruence, and non-orthogonality of the congruence to the deformed slice implies that

the latter has even smaller volume, so the extremal slice is a local maximum of volume. The reasoning for

(ii), the existence of the saddle point, was not as explicit in the talk, but it was pointed out in a picture that

there would necessarily be a local minimum along some one-parameter family of slices joining them. This

is of course a necessary condition for the existence of a saddle point, but it is not clear to us that a saddle

point is guaranteed to exist.

We end this appendix with an example where the strong energy condition does not hold, and consequently

12 Strictly speaking, we need here to assume the generic condition, that Rabu
aub 6= 0 somewhere along each geodesic, where ua

is the geodesic tangent. In the case with a (negative) cosmological constant, this is automatic.
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there can be more than one extremal hypersurface with the same boundary, and the extremal slices are

not local maxima of volume: de Sitter spacetime. The constant time slices of a static patch of de Sitter

spacetime are all anchored at the same location on the boundary of the patch, all are extremal, and all have

the same volume. To visualize this, consider the two dimensional de Sitter hyperboloid embedded in three

dimensional Minkowski spacetime. The constant-time slices of the static patch are equatorial semicircles on

the de Sitter hyperboloid, and are related to one another by Lorentz boosts in the embedding spacetime.

Appendix B: Techniques to evaluate the maximal volume

In this appendix, we demonstrate the use of the flux picture of complexification as a technical tool for

explicit computation. The techniques presented here complement existing studies in the literature such as

[9], where the maximal volume was computed by maximizing the volume functional directly. In subsection

(B 1), we evaluate the volume flux for the BTZ black hole. In subsection (B 2), we present a variation of this

technique when the cutoff is null, in which case the flux density is given by the lapse function.

1. Direct evaluation of flux

In this appendix, we present the derivation of the volume current and the volume flux for the BTZ black

hole. The boundary foliation is the symmetrical one tL = tR.

Let us start with the BTZ black hole. We work in (r, v) coordinates, which are regular across the horizon:

ds2 = −f(r)dv2 + 2dvdr + r2dφ2 (B1)

f(r) =
r2 − r2

+

L2
(B2)

The function v(r) describing the shape of the maximal slices was essentially worked out in [9]. Its derivative

is given by:

dv

dr
=

√
f(r)r2 + C2 − C

f(r)
√
f(r)r2 + C2

(B3)

where C is a positive constant.13 The constant C labels the particular maximal slice in the foliation, and

it ranges from 0 (for the slice anchored at tL = tR = 0) to r2
+/2L (for the final slice).14 The unit normal

1-form to the slice labeled by C is:

nµdx
µ = −

√
f +

C2

r2
dt− C

rf
dr (B4)

13 C is the negative of the “energy” E in [9]. From the viewpoint of that paper, the constant C arises as a “conserved quantity”

associated with the v-independence of the volume functional.
14 To see this, note that dv

dr
= 1

f
on the slice tL = tR = 0 (since this slice is at t = 0). As for the final slice, symmetry dictates

that it is a slice of constant r, and dv
dr

diverges. Both of these facts are verified by plugging in C = 0 and C =
r2+
2L

respectively.
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To get the volume current vµ, we glue together the unit normal to all the slices labeled by different values

of C. This amounts to promoting C to the function of v and r implicitly given by integrating (B3) from the

midpoint (also called the “throat” in the numerical relativity literature) outward:

v = − 1

r+
arctanh

(
rC
r+

)
+

∫ r

rC

√
f(x)x2 + C2 − C

f(x)
√
f(x)x2 + C2

dx (B5)

The first term on the right-hand side is the tortoise coordinate of the throat, and rC is the radius of the

throat given by:

rC =

√
1

2
(r2

+ +
√
r4
+ − 4C2L2) (B6)

The two equations above define C(r, v). We then find the volume current:

vµ∂µ =
1

f(r)

(√
f(r) +

C(r, v)2

r2
− C(r, v)

r

)
∂v −

C(r, v)

r
∂r (B7)

It can be checked that both components of vµ are regular at the horizon. The volume element is ε =

rdv ∧ dr ∧ dφ. Computing the interior product v · ε and restricting to the cutoff at constant r = rc yields:

v · ε
∣∣∣∣
rc

= C(rc, v)dv ∧ dφ (B8)

Note that rc is allowed to be the horizon since our formalism can handle null surfaces. Evaluating the flux,

we then find the change in the volume between v1 and v2 to be:

∆V = 2π

∫ v2

v1

C(rc, v)dv (B9)

In the usual near-boundary cutoff rc →∞, the v coordinates becomes the boundary time coordinate t and

the function C(rc, v) is nothing but the flux density, or the complexification rate. The main lesson from this

computation is that the flux density coincides with a certain time function C for the maximal slicing.

We also note that it is possible to work with Schwarzschild coordinates (r, t) instead of (r, v), despite the

coordinate singularity at the horizon. In Schwarzschild coordinates, the shape of the maximal slice reads:

t = −
∫ r

rC

C

f(x)
√
f(x)x2 + C2

dx (B10)

To integrate across the horizon, we should understand the integral above in the sense of the Cauchy principal

value [47]. In fact, the plot (3) of the volume flow was generated by working in Schwarzschild coordinates

and using the Cauchy principal value to continue the maximal slice across the horizon.

Finally, it might appear surprising that the flux of the volume flow yields a finite answer when the cutoff

is taken to the boundary, especially if we think about the flow direction near the boundary. The maximal

slice should become tangential to the constant Killing time slices near the boundary, and since the volume

current is orthogonal to the maximal slices, it may seem that the volume flux across a constant-r cutoff is

zero as r → ∞. That this is not the case can be understood as follows: at a finite but large cutoff in the
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bulk, the flow direction has a small component not orthogonal to the constant Killing time slice. As the

cutoff is sent to the boundary, this small component tends to zero, but the volume element on the cutoff also

diverges in the same time. This divergence cancels the vanishing of the subleading component in a way to

yield a finite answer.

2. Flux across a null surface

In this appendix, we elaborate on the particular case of the volume flux across a null surface, and relate

this flux to the lapse function for a time function τ defining the maximal foliation. Recall that to a time

function τ we can associate a lapse function N defined by:

n = Ndτ (B11)

where n is the unit normal 1-form to a constant τ slice, with sign chosen so that N > 0. Since the volume

current vector v is the unit normal vector to the maximal slices, we have v · n = 1. Now let k be the null

normal 1-form to the horizon, normalized so that v · k = 1, and let A be the area form of the intersection of

the maximal slice with the horizon, so that ε = k ∧ n∧A. The volume current is then v · ε = n∧A− k ∧A,

whose pullback to the null surface is n ∧ A = Ndτ ∧ A, since the pullback of k vanishes. The 2-form NA

thus serves as the volume flux density.

This fact can be seen more geometrically as depicted in Figure (14). We pick two slices in the foliation

labelled by τ and τ + ∆τ , with ∆τ small. Let A be the intersection between slice τ and the horizon, and

let C be the intersection between slice τ + ∆τ and the horizon. Moreover, consider a volume flow worldline

passing through A, and let B be the intersection of that worldline with the slice τ + ∆τ . Since ∆τ is

A

B
C t

t+Δt

FIG. 14. Illustration of the derivation of (B13).
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infinitesimal, the geometry of the triangle ABC is like in flat space. Since AB is orthogonal to BC, we

conclude that AB = BC, where AB denotes the proper time elapsed along the worldline between A and B,

and BC denotes the proper length of the segment of the slice τ + ∆τ between B and C.

Now consider the increment in the volume ∆Vol between τ to τ + ∆τ . We have ∆Vol = 4πr2
+BC =

4πr2
+AB, where we work in 3+1 dimensions for concreteness, and in the second equality we used the relation

derived in the previous paragraph. (There is also an identical contribution from the left-side of the Penrose

diagram, which we ignored.) On the other hand, we have AB = N(A)∆τ . Thus, we can relate the volume

increment to the lapse as follows:

∆Vol = 4πr2
+N(A)∆τ. (B12)

For a finite time difference, we integrate the lapse:

∆Vol = 4πr2
+

∫
H
Ndτ. (B13)

This is the formula we are after: the volume flux across the horizon is also the integral of the lapse along

the horizon. In other words, the lapse on the horizon serves as the volume flux density.

Appendix C: Stationarity of maximal foliation and volume flow in the late-time regime

In this appendix, we focus on the AdS-Schwarzschild in 3+1 dimensions, and explicitly check that the

maximal foliation and volume flow are stationary at late times. To do this, we first write the Schwarzschild-

AdS black hole in the “maximal slicing” gauge:

ds2 = −α2dτ2 + γ2(dr + βdτ)2 + r2dΩ2
2, (C1)

in which the slices of constant τ are the left-right symmetric maximal slices that asymptote to constant

Schwarzschild time slices at the two boundaries. The radial coordinate r and the angles θ and φ on the

sphere can be chosen to be the same as the usual Schwarzschild coordinates. The functions α, β and γ are

functions of τ and r, given by:

γ−2 = 1− 2M

r
+
C(τ)

2

r4
− Λ

3
r2 (C2)

α = γ−1

[
1 + C,τ

∫ ∞
r

γ3(τ, r′)

r′2
dr′
]

(C3)

β =
αC(τ)

r2
(C4)

for some function C(τ). To derive equations (C2), (C3) and (C4), we can, for example, feed the metric (C1)

into Einstein’s equation. Analogous calculations for black holes in flat space have been done in the numerical
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relativity literature (see for example [47]). In writing (C3) we have imposed the boundary condition αγ → 1

as r →∞, so that τ will agree asymptotically with the standard AdS global time coordinate.

The function C(τ) is determined by regularity of the maximal slice at the “middle”. According to (C1),

the metric induced on the maximal slice is γ2dr2 + r2dΩ2
2, so in particular γdr is a unit 1-form on the slice.

Since r reaches a minimum at the middle of each slice, the pullback of dr to the slice vanishes at the middle,

so γ must diverge there. This implies

C2 = 2Mr3
m − r4

m +
Λ

3
r6
m, (C5)

where rm = rm(τ) is the r coordinate at the middle of each constant τ slice. In the late time limit, rm(τ)

approaches a constant, namely rf , the radial coordinate of the “final slice”. Therefore C(τ) too approaches

a constant. It follows that the metric functions α, β, and γ all become constant in the late τ limit, which

implies that the coordinate vector field ∂τ approaches the Schwarzschild time Killing field. The unit normal

1-form αdτ therefore becomes invariant under the Killing flow, as does the volume current

v = α−1(∂τ − β∂r), (C6)

which is minus the contravariant form of αdτ .

Appendix D: Maximal slices in Vaidya: a closer look

Consider a maximal slice anchored at boundary time tb in the double shell Vaidya/AdS spacetime in 2 + 1

dimensions, (20), (25)). For tb < 0, the slice stays entirely inside the AdS part of the geometry and is given

by a constant t slice (where t denotes the global time in AdS). When 0 < tb < b, the slice crosses the first

shell and has two portions, one in the AdS region (still a constant t slice) and one outside the shell. The

volume functional for the part outside the shell reads:

Vol = 2π

∫
r
√

2r′ − fdv (D1)

where we write the slice as a function r(v). Since the functional is independent of v, we have a conserved

energy:

E = r′
∂L

∂r′
− L =

r(f − r′)√
2r′ − f

(D2)

Similarly, there is a conserved energy in the AdS region, which can be shown to vanish by smoothness at

the center (r = 0). The maximal slices consist of locally maximal slices apart from on the shells, where they

satisfy a Weierstrass-Erdmann corner condition [48]. Since the shells are located at a constant value of v,

the corner condition simplifies to the requirement that the “conjugate momentum”

pr =
∂L

∂r′
=

r√
2r′ − f

(D3)
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be continuous across the junction, which amounts to requiring that the jump in r′ is 1/2 the jump in f .

Together with the fact that the portion of the maximal slice in the AdS region must be constant global time

slice, this determines the derivative of r(v) at the junction on the BTZ side:

dr

dv

∣∣∣∣
r1,+

= 1 + r2
1 −

a

2
(1 + r2

+) (D4)

where r1 is the r-coordinate of this junction, and r1,+ means an r value slightly larger. Similarly, for tb > b,

the maximal slice crosses both shells and the junction condition has to be imposed at each junction. At the

outer junction, located at r = r2, the discontinuity of the derivative of r(v) is found to be:

dr

dv

∣∣∣∣
r2,−

− dr

dv

∣∣∣∣
r2,+

=
1− a

2
(1 + r2

+). (D5)
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